یک روش جدید برای حل عددی معادلات انتگرال-دیفرانسیل با موجک هار

پایان نامه
چکیده

در این پایان نامه ابتدا مفاهیم مقدماتی پیش نیاز برای موضوع مورد بحث ارائه می شود که عبارتند از معادلات انتگرال خطی فردهلم، معادلات انتگرال خطی ولترا، معادلات انتگرال-دیفرانسیل، موجک هار و روش برویدن. در فصل دوم به حل عددی معادلات انتگرال فردهلم غیر خطی نوع دوم با استفاده از موجک هار می پردازیم.به این صورت که ابتدا تقریب توابع ‎$ f(x) $‎, ‎$ k(x,t) $‎ و ‎$ u(x) $‎ با استفاده از موجک هار محاسبه می شود و سپس در معادله انتگرال جاگذاری می شوند که با حل آن به یک سیستم غیر خطی از معادلات جبری می رسیم.که برای حل این سیستم معادلات نیاز به محاسبه ‎$widetilde{u}$‎ است که در بخش ‎5.2‎ به آن پرداخته ایم.سپس به بحث مورد نظر یعنی روش عددی برای حل معادله انتگرال-دیفرانسیل با استفاده از موجک هار می پردازیم.حل مساله بدین گونه است که توابع ‎$ u $‎ و ‎$ k(x,t,u,u) $‎ با استفاده از موجک هار تقریب زده می شوند و از تابع زیر انتگرال, انتگرالگیری دقیق انجام می شود و با استفاده از نقاط درونیابی به یک دستگاه معادلات غیرخطی می رسیم. برای حل این دستگاه از هر دو روش نیوتن و برویدن استفاده می کنیم که روش برویدن موثرتر است. از این دستگاه مقادیر ‎$ u $‎ در نقاط هم محلی بدست می آید و با استفاده از آن مقادیر ‎$ u $‎ را در نقاط هم محلی بدست می آوریم. مثال های عددی برای نشان دادن عملکرد موثر روش آورده شده اند.

منابع مشابه

الگوریتم های جدید برای حل عددی معادلات انتگرال فردهلم و ولترا با استفاده از موجک هار

در پایان نامه ی حاضر دو الگوریتم جدید مبتنی بر موجک هار پیشنهاد شده است، اولین الگوریتم برای حل عددی معادلات انتگرال فردهلم غیرخطی نوع دوم و دومی برای حل عددی معادلات انتگرال ولترای غیرخطی نوع دوم به کار می رود. این روش ها برای بهره برداری از مشخصات ویژه موجک هار در یک بعدی و دو بعدی طراحی شده اند. در مقایسه با روش های عددی دیگر مزیت استفاده از روش حاضر این است که در آن برای محاسبه ی انتگرال ها...

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

متن کامل

حل عددی معادلات انتگرال با استفاده از موجک های هار

در این ‏رساله یک روش محاسباتی برای حل معادلات انتگرال فردهلم- ولترا و معادلات انتگرال-دیفرانسیل و رده ای از معادلات انتگرال دوبعدی ولترای غیر خطی معرفی نموده ایم. از موجک های هار به عنوان توابع پا?ه ای در تقر?ب جواب معاد?ت انتگرال استفاده می کنیم. برای این منظور با معرفی یک عملگر مناسب جوابهای تقریبی را به دست می آوریم. با استفاده از قضیه نقطه ثابت نشان می دهیم که تحت شرایط مشخص این عملگر دارای...

موجکهای چبیشف برای حل عددی معادلات انتگرال تصادفی ولترا با روش کمترین مربعات

این مقاله با استفاده از موجک چبیشف و روش کمترین مربعات، یک روش تقریبی برای حل معادله انتگرال ایتو-ولتراارائه می دهد. معادله انتگرال ایتو-ولترا با روش کمترین مربعات به وسیله موجک چبیشف به یک دستگاه معادلات خطیتبدیل می شود که آنالیز خطای روش پیشنهادی، ارائه شده و سرعت همگرایی نیز اثبات شده است. همچنین مثال هایعددی میزان دقت و کارآمدی این روش را نسبت به روش ماتریس عملیاتی تصادفی نشان می دهند.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023